Image Image Image Image Image
Scroll to Top

To Top

Featured

03

Sep
2019

No Comments

In Featured
Latest News

By admin

Massachusetts Lab using plant Genetics

On 03, Sep 2019 | No Comments | In Featured, Latest News | By admin

A Massachusetts lab is using plant genetics to change how crops are grown and increase food output.  This type of innovation is the future of agriculture and will help feed the world.

Click Here for the story on WCVB

BDN: Local pesticide bans are a mistake

On 01, Aug 2019 | No Comments | In Blog, Featured, Pollinator Health | By admin

By Dean Cray, opinion guest column. • June 26, 2019 11:03 am

For centuries, physicians have been controlling human diseases using all the tools available to them: proper nutrition of patients, sanitation, early disease diagnosis and intervention through medicines, including those derived from natural sources, chemicals and with more recent innovations, such as gene editing.

Likewise, farmers also control plant and animal diseases using the same approaches — proper plant and animal nutrition, sanitation, early disease diagnosis and intervention through natural, chemical and genetic sources.

The terms vary, but the products used to control diseases are analogous. If the affected organism is a human, the common term is medicine. If it’s an animal, the term is veterinary medicine. If it’s a plant, the term is pesticide. The word pesticide doesn’t sound as soothing or healing, but pesticides are indeed plant medicines. And there are several kinds of pesticides.

Many of the stressors plaguing these different fields of work are the same — bacteria, insects, fungi, viruses, etc. And they all have an equivalent objective: effective human, plant and animal health management.

To achieve that, each relies on a known set of approaches: identify the problem, quarantine the impacted areas so that the disease doesn’t spread, and implement evidenced-based strategies to ensure a healthy result. In farming and land management, that includes techniques such as crop rotation, use of more tolerant varieties of plants, targeted soil nutrition and manipulation of harvest dates to avoid blight or insect infestations.

It’s only when other approaches don’t provide adequate control that other scientifically-proven interventions are brought into the picture such as chemical and gene editing treatments.

Indeed, these are the principles that form the basis of integrated pest management, where several approaches are incorporated into a holistic, comprehensive and sustainable treatment plan that is environmentally sound and cost effective.

Simply stated, integrated pest management is the most effective tool we have available to protect our health and that of crops and the environment. For the eight years that I served as a state representative on the Committee on Agriculture, Conservation and Forestry, integrated pest management was by statute and I believe still is the policy of the state of Maine. But several towns and cities are attempting to take away a key element of integrated pest management by passing or voting on municipal ordinances that preclude the use of synthetic pesticide applications not just on town owned property, but also on privately owned residential lawns and lawns and gardens.

This is a misguided solution in search of a problem and an infringement on our private property rights. When used following the directions, these applications aren’t harmful. To quote the University of Maine Cooperative Extension, integrated pest management “is a comprehensive, decision-making process for solving pest problems in both agricultural and non-agricultural settings,” and by using it, “informed decisions can be implemented to achieve optimum results in ways that minimize economic, health, and environmental risks.” And the U.S. Department of Agriculture’s latest Pesticide Data Program annual survey corroborates that integrated pest management is working.

We can all relate to wanting our families to live in a non-toxic environment, but banning the use of synthetic pesticides will simply mean residents will lose the ability to choose how to protect their properties.

Often a treatment plan involves several strategies. The same goes for a healthy garden and backyard. Just as physicians cannot always effectively protect us from human maladies without chemical interventions, neither can farmers, foresters, landscapers nor passionate gardeners when disease or insect outbreaks strike. Think browntail moths, West Nile virus, avian flu, poison ivy or encephalitis.

These problems impact not just vegetation, but humans as well. That’s why integrated pest management is the most effective tool we have to protect our health, crops and environment. Towns and cities should not be precluding its use.

Dean Cray is a Somerset County commissioner and former state representative who served on the Committee on Agriculture, Conservation and Forestry.

https://bangordailynews.com/2019/06/26/opinion/contributors/local-pesticide-bans-are-a-mistake/

CommonWealth Mag: Gene editing for plants could feed the world

New tech might avoid public unease with GMOs

WILLIAM SMITH May 24, 2019

THE NEW ENGLAND life sciences industry has produced an explosion of therapies for small patient populations with rare diseases.  Last year, fully half of newly approved drugs were for these smaller populations.

While emerging biotech therapies provide hope for small clusters of human patients with rare diseases, when deployed to the agricultural sector, biotech advances the promise nourishment for tens of millions who may otherwise face food shortages that are increasingly exacerbated by drought and pestilence.  When it comes to agriculture, biotech not only provides hope that the many might avoid food scarcity but also represents a promising opportunity for the New England economy.

The problem of future food supplies is a real one.  After a decade of decline, the number of undernourished people has risen to 821 million as of last year.  Millions are leaving farms and crowding into cities where the food chain cannot keep up.  The planet is adding 80 million people every year while arable land is shrinking.

Without biotech breakthroughs to improve the yield of crops and protect them from disease, drought and pests, our ability to feed a growing population is uncertain.  When it comes to solutions to the food supply problem, the United Nations has recognized that: “biotechnology can be of significant assistance in meeting the needs of an expanding and increasingly urbanized population.”

While Massachusetts is always on the forefront of human biotech science, it is poised to have a disproportionate role in agricultural science breakthroughs that will help feed the world because of the expertise found here in gene editing techniques.  The agricultural science advances most likely to boost crop yields will come from more precise gene editing technologies.  As the Scientific American recently wrote of gene editing:  “It’s difficult to overstate the importance of this new revolution in plant breeding.”

Gene editing for plants is not only amazing science but it will also likely bring greater consumer acceptance than previous attempts to genetically modify plants.   New plant breeds based upon recent advances in gene editing should not create the discomfort among consumers brought on by genetically modified foods (GMOs).   While GMO foods have a good safety record, some people have nonetheless been uncomfortable with the fact that such genetic modifications involve bringing foreign genetic material into the plant.  At the time GMO foods were invented, the technology simply did not exist to modify the plant’s own genetic material.  But recent advances in gene editing will ensure that plants are modified using solely their own genetic material, producing not only highly natural plants, but stronger ones with greater yields.  Gene editing of plants is essentially an accelerated form of plant breeding, a process farmers have been using for thousands of years.Meet the Author

Visiting Fellow, Pioneer InstituteBio »Latest Stories »Because the Commonwealth’s companies and academic organizations are exploring some of the most promising gene editing technologies, Massachusetts-born ideas will likely be driving the food revolution.  Last year, for example, the Broad Institute in Cambridge, licensed its promising CRISPR gene editing technology to agricultural giant Monsanto (soon to be Bayer Crop Science).  Even small fruit and vegetable farmers in Massachusetts will benefit if they can breed heartier crops less susceptible to rot and pestilence.

As with any new technology, there will be potential dangers to avoid.  No one, for example, should want to create a new genetically modified tobacco plant that is more addictive for humans.  Yet the upside of this food revolution could be staggering, with dramatic advances for farmers in developing countries who will be capable of growing robust and resilient crops for local populations.  Massachusetts should take pride in the potentially revolutionary benefits of this hometown science.

Farm to Food Gene Editing: The Future of Agriculture

On 25, Apr 2019 | No Comments | In Blog, Featured, GMO’s and The Environment | By admin

Curious about what gene editing is? Watch this video to learn how CRISPR is helping farmers grow better crops to feed our growing population.

USA Today: Earth Day for a dairy farmer: Thinking decades down the line

On 23, Apr 2019 | No Comments | In Blog, Featured, GMO’s and The Environment | By admin

April 22, 2019

What U.S. dairy farmers of today are doing to preserve our environment

I’ve had the honor of working with dairy farmers for years, and a lot of what you think about them is true. They’re modest. They’re connected to the earth. And they work incredibly hard. Every day, they’re up before dawn, working 12 and 14-hour days, whether it’s 90 degrees out or 50 degrees below zero.
 
They choose this hard work because they believe in the importance of providing nutritious, great-tasting food, like the milk in your child’s glass or the slice of cheese on her favorite sandwich.

What you might not know is that dairy farmers are working just as hard to ensure our children inherit a healthy planet. They know it’s the right thing to do. And when 95% of dairy farms are family-owned, they do it to ensure the land is there for their children. 

But the issues facing our planet require more than just individual action, which is why the U.S. dairy community has made sustainability an industry-wide priority. Years’ worth of investments, research — and, yes, hard work — have allowed us to address critical environmental issues, like climate change and greenhouse gas emissions. 

Dairy farmer and environmental scientist Tara Vander Dussen with her family on their farm, Rajen Dairy.

Dairy farmer and environmental scientist Tara Vander Dussen with her family on their farm, Rajen Dairy. (Photo: Innovation Center for U.S. Dairy)

Ten years ago, the Innovation Center for U.S. Dairy — created by dairy farmers to identify best practices and unite around common goals — established a voluntary yet aggressive goal for the industry. The U.S. dairy community would reduce greenhouse gas emissions intensity 25% by 2020. 

Today, we are on track to meet that goal. 

In making the investments necessary to meet the goal set, U.S. dairy farmers have become global leaders in reducing greenhouse gas emissions. According to a report earlier this year from the United Nations’ Food and Agriculture Organization (FAO), Climate Change and the Global Dairy Cattle Sector, North American dairy farmers are the only ones who have reduced both total GHG emissions and intensity over the last decade.

Dairy farmer and nutritionist Rosemarie Burgos-Zimbelman, who has dedicated her life to dairy nutrition.

Dairy farmer and nutritionist Rosemarie Burgos-Zimbelman, who has dedicated her life to dairy nutrition. (Photo: Innovation Center for U.S. Dairy)

It’s not just greenhouse gas emissions. U.S. dairy farmers work more closely with animals than just about anyone, and they know that while they are taking care of the cows, the cows are taking care of them. That’s why they created the National Dairy FARM (Farmers Assuring Responsible Management) Program, the first internationally-certified animal welfare program in the world.

The U.S. dairy community’s commitment to sustainability isn’t new. It has been going on for generations. Indeed, producing milk now uses fewer natural resources than it ever has before. Over the course of the lifetime of today’s average dairy farmer, producing a gallon of milk now requires 65% less water, 90% less land and 63% less carbon emissions. 

While progress has been made, there is still a lot to be done. That’s why the U.S. dairy community and dairy farmers are committed to identifying new solutions, technologies and partnerships that will continue to advance our commitment to sustainability.  

So why do America’s dairy farmers work so hard to farm more sustainably? Why spend countless hours looking for innovative ways to be more efficient when they’ve already put in a 14-hour day?

It’s not because anyone told them to, or because regulation forced them to. It’s because so many of them are farming land their families have been farming for generations. They know they’re just the latest people entrusted as stewards of the earth. Farmers came before them, and farmers will come after them. Sure, they have more information than any of their predecessors did, and they are now tackling challenges, from climate change to global trade, that their forefathers could scarcely dream of. But the responsibility of today’s dairy farmer — leaving the planet better than they found it — is no different. 

This Earth Day, and every day, America’s dairy farmers are living up to that responsibility. May they never tire.

Vilsack is the former U.S. Secretary of Agriculture and the current president and CEO of the U.S. Dairy Export Council.

https://www.usatoday.com/story/sponsor-story/innovation-center-for-us-dairy/2019/04/22/earth-day-dairy-farmer-thinking-decades-down-line/3521007002/?mvt=i&mvn=400ecb525a984b48bdeecbe607c274e8&mvp=NA-GANNLOCASITEMANA-11238693&mvl=Size-2×3+%5BDigital+Front+Redesign+Tile%5D

27

Nov
2018

No Comments

In Blog
Featured
GMO Labeling

By admin

Science makes bread taste better

On 27, Nov 2018 | No Comments | In Blog, Featured, GMO Labeling | By admin

Renegade bakers and geneticists develop whole-wheat loaves you’ll want to eat

Boston Globe: 3 policies for the future

Food is going high-tech — policy needs to catch up with it

BY THE BOSTON GLOBE EDITORIAL BOARD

or generations newspaper editorials have been the “eat your spinach” part of the operation. But what if that spinach can now be organic baby spinach, or hydroponically grown? What if we can eat it year round — and from just around the corner?

With a warming planet, the need for high-tech food and high-tech food policies is undeniable. Both are going to play an increasingly vital role in the planet’s future — and the way we eat. Here are a few ways to use science to steer food into a more sustainable path.

Learn to love GMOs, and resist efforts to demonize or prohibit them. Genetically modified food sets off alarm bells for purists, but crops designed to last longer or resist disease are increasingly necessary.

The good news is that new federal labeling regulations, which could become final by Dec. 1, will preclude the kind of state-by-state labeling regulations that Vermont had already indulged in and that Massachusetts has been perpetually on the cusp of enacting.

The even better news is that the science of food — of producing fruits with a longer shelf life, wheat that requires less water or fertilizer — is advancing so fast that even the foodie fearmongers can’t keep up.

First on the federal role: While moving at a glacial pace, the US Department of Agriculture has at long last brought forth a final set of regulations designed to implement a law passed by Congress in 2016 to deal with standards for disclosing bioengineered ingredients. Not surprisingly the new regs generated a huge amount of controversy — more than 14,000 comments received by the agency during the public comment period.

Assuming the regs are indeed finalized Dec. 1, they won’t go into effect until Jan. 1, 2020. What consumers are likely to notice is that GMO labeling will become “BE food,” or “bioengineered food.” And since at least two-thirds of all foods sold in the US contain some ingredients in that category — consumers are indeed likely to see it everywhere.

What it will accomplish is to prevent every state and locality from drafting its own labeling laws and, in the process, making the free movement of good products from state to state difficult if not impossible. And it will let innovation continue unhindered.

The future of seafood in the United States is aquaculture. Even the king of seafood, Roger Berkowitz, acknowledges that. “The technology has gotten so good with submersible pens,” said Berkowitz, chief executive of the Legal Sea Foods empire. “It’s a game changer.”

Berkowitz is particularly excited about the prospect of fish farms in federal open waters. Aquaculture in Massachusetts is largely confined to shallow waters; think oyster beds on Cape Cod. Of course, this country for years has talked about offshore fish farming, but the time has come, with wild fish stocks dwindling. In 2017, the US imported a record amount of seafood, more than 6 billion pounds, and exported only about 3.6 billion pounds.

While Massachusetts and some municipalities have regulated aquaculture, what’s needed now is a federal regulatory framework to support aquaculture in the ocean. It hasn’t been easy navigating the concerns of environmentalists, fishermen worried about their own livelihoods, and ships attached to particular routes. The ocean may be big, but surprisingly not big enough to accommodate everyone’s needs.

Congress can play a big role: Get a bill that everyone likes. Here’s another thought: How about supporting aquaculture as part of the farm bill, something US Representative Seth Moulton would like to see. With Democrats taking back the majority in the House, maybe this could get done next year.

Clear federal policies could enable the prospect of fish farming using the infrastructure of offshore wind turbines. Without such policies, the future of fish farming will remain murky, because these operations are expensive and investors don’t like uncertainty.

“No one would spend a dime on that,” said Peter Shelley, senior counsel at the Conservation Law Foundation, which has been closely following the development of aquaculture in the ocean. “It makes Cape Wind look like a sure bet.”

Assume change. Farm and food policies tend to deal with what we eat and grow now, but climate change should end that way of thinking. The government and industry need to anticipate disruption, and be ready to adapt, rather than pour money into trying to preserve vanishing industries that can’t be sustained any longer.

Rising temperature of oceans, for example, have forced the cod and lobsters to flee north to colder waters. We lament the loss of cod in Massachusetts, but Southern fish species are flocking to us now. In other words, we need to get used to “Cape Mahi-Mahi.”

Warmer temperatures in New England could extend the growing season for blueberries, strawberries, peaches, and corn. That could be a silver lining for consumers and farmers’ markets.

Food policy is often inherently conservative: organic food fans and proponents of farm subsidies want different versions of the same thing, which is to cling to the way food’s always been. But food is going to change whether we like it or not — and our food policies should try to direct those changes, not stop them.

http://apps.bostonglobe.com/ideas/graphics/2018/11/the-next-bite/the-supply-chain-editorial/

04

May
2018

No Comments

In Blog
Featured

By admin

60 Minutes: CRISPR: The gene-editing tool revolutionizing biomedical research

On 04, May 2018 | No Comments | In Blog, Featured | By admin

A new tool could be the key to treating genetic diseases and may be the most consequential discovery in biomedicine this century.

It’s challenging to tell a story about something that’s invisible to the naked eye and tricky to explain. But it’s one we undertook, because rarely does a discovery come along that could revolutionize medicine.  It’s called CRISPR and it stands for Clustered Regularly Interspaced Short Palindromic Repeats. CRISPR sounds more like a refrigerator compartment than a gene-editing tool, but it’s giving scientists power they could only imagine before – to easily edit DNA – allowing them to reprogram the genetic code of living things. That’s opening up the possibility of curing genetic diseases. Some researchers are even using it to try to prevent disease entirely by correcting defective genes in human embryos. We wanted to see for ourselves, so we went to meet a scientist at the center of the CRISPR craze.

“There are about 6,000 or more diseases that are caused by faulty genes. The hope is that we will be able to address most if not all of them.”

Bill Whitaker: This is CRISPR?

Feng Zhang: This has CRISPR in it.

Bill Whitaker: So– this is what’s revolutionizing science and biomedicine?

Feng Zhang: This is what many people are using– in research — and trying to develop treatments.

Bill Whitaker: That’s wild.

Feng Zhang: Yeah.

That little vial is igniting a big revolution that is likely to change the way doctors treat disease in the future. One of the brains behind it, is baby-faced Feng Zhang.

crisprpreview.jpg

Feng Zhang speaks with correspondent Bill Whitaker

 CBS NEWS

At 36, he’s already a tenured professor at MIT and a scientific celebrity because he figured out a way to override human genetic instructions using CRISPR.

Bill Whitaker: So, the CRISPR is not the liquid, the CRISPR is in the–

Feng Zhang: It’s dissolved in the liquid. There are probably billions of molecules of CRISPR…

Bill Whitaker: Billions?

BOTH: In here.

Feng Zhang: That’s right. And the way we use it is we take the liquid and apply it to cells.

For the last seven years, Zhang has been working on CRISPR at the Broad Institute in Cambridge, Massachusetts. It’s a research mecca brimming with some of the brightest scientific minds from Harvard and MIT on a mission to fight disease. CRISPR is making medical research faster, cheaper, easier. Zhang’s colleagues predict it will help them tackle diseases like cancer and Alzheimer’s.  

Bill Whitaker: How many diseases are we talking about that this could be used to treat?

Feng Zhang: There are about 6,000 or more diseases that are caused by faulty genes. The hope is that we will be able to address most if not all of them.

Bill Whitaker: Most if not all of them?

Feng Zhang: That’s the long-term hope.

Bill Whitaker: So we’re talking diseases like Huntington’s—

Feng Zhang: Uh-huh.

Bill Whitaker: Sickle Cell.

Feng Zhang: Yup. ALS—hemophilia.

Eric Lander: I think CRISPR, it’s fair to say, is perhaps the most surprising discovery and maybe most consequential discovery in this century so far.

lander-walk-talk-2.jpg

Eric Lander, director of the Broad Institute, speaks with correspondent Bill Whitaker

 CBS NEWS

To understand exactly what CRISPR is, we went to Eric Lander for a quick science lesson. He’s director of the Broad and Zhang’s mentor. He’s best known for being a leader of the Human Genome Project that mapped out all of our DNA, which is like a recurring sequence of letters.

Eric Lander: During the Human Genome Project, we could read out all the human DNA, and then, in the years afterwards, find the misspellings that caused human diseases. But we had no way to think about how to fix ’em. And then, pretty much on schedule, this mind-blowing discovery that bacteria have a way to fix those misspellings, appears.

Bill Whitaker: This comes from bacteria?

Eric Lander: This comes from bacteria.  Bacteria, you know, they have a problem. And they came up with a real clever solution. When they get infected by viruses, they keep a little bit of DNA, and they use it as a reminder. And they have this system called CRISPR that grabs those reminders and searches around and says, “If I ever see that again, I am gonna cut it.”

Zhang used that same bacterial system to edit DNA in human cells. Our DNA is made up of chemical bases abbreviated by the letters A, T, C, and G. As you can see in this animation from Zhang’s lab at MIT, a mutation that causes disease reads like a typo in those genetic instructions. If scientists can identify the typo, they can program CRISPR to find it and try to correct it.

Bill Whitaker: You program it? You say–

Feng Zhang: That’s right.

Bill Whitaker:  “I’m looking for this string of letters.”

Feng Zhang: Uh-huh.

Bill Whitaker: And the CRISPR will go in, and out of all of the billions and billions and billions of– of letters on your DNA, find the exact ones that you have programmed?

Feng Zhang: That’s right. CRISPR will allow you to– do many different things. You can cut it– to edit it.

Bill Whitaker: So you can snip out the bad part and you can add something that you want as well?

Feng Zhang: That’s right. You can give the cell a new piece of DNA that carries the sequence you want to incorporate into the genome.

Bill Whitaker: You say this so matter of factly. This is amazing.

Feng Zhang: It is pretty cool.

Bill Whitaker: How many other labs around the world are working with CRISPR like this?

Feng Zhang: Many. One of the things that we have been doing is to make the tool available to researchers. To date I think we have gotten it out over– 45,000 times, to 2,200 labs, in 61 countries.

Bill Whitaker: What are they doing with it?

Feng Zhang: They are using it to do everything.  A lot of applications of CRISPR. It’s really a Swiss army knife.

Cue the worldwide CRISPR frenzy. At the University of California, scientists used a form of CRISPR to edit mosquitos so they can’t transmit malaria. Their colleagues are modifying rice to better withstand floods and drought. In China, scientists tweaked a gene in beagles to make them more muscular.

crispr-full.jpg

A CRISPR vial from Zhang’s lab made its way to Dr. Kang Zhang. He is an ophthalmologist and a professor at the University of California, San Diego and wanted to see what all the hype was about.

Bill Whitaker: What did you think when you first heard of CRISPR?

Kang Zhang: I was a little bit skeptical.

Bill Whitaker: Why skeptical?

Kang Zhang: It worked so well. Too well to be believable.

He decided to experiment on mice with retinitis pigmentosa, a genetic form of blindness. He conducted a vision test using a mouse with the disease.

Bill Whitaker: This is the blind mouse?

Kang Zhang: This is the blind mouse. And– obviously, you can see that he is ignoring the rotating stripes.

His researchers injected CRISPR into the eye of another blind mouse. The CRISPR was programmed to find the main gene associated with the disease and turn it off. It takes three months to see the results.

Kang Zhang: Now, let’s see how he’s responding to the light.

Bill Whitaker: He’s following it around.

Kang Zhang: Yes.

Bill Whitaker: Look at that. You’re sure that he is seeing these lights?

Kang Zhang: This is actually a very commonly used test for vision.

Bill Whitaker: How much of their sight do they recover?

Kang Zhang: About 30, sometimes even 50% of the sight for– for mice.

The next phase of Dr. Zhang’s research is to see how CRISPR works on one of our closer relatives. He sent us this video from his lab in China where he’s studying monkeys with retinitis pigmentosa. The blind monkey ignores the food. He says this monkey was treated with CRISPR and it’s easy to see the difference. Dr. Zhang hopes to try this on humans soon.

If CRISPR is used to treat disease or make a drug it could mean big bucks. The Broad and Feng Zhang hold a primary patent for CRISPR’s use in human cells in the United States. But no technology is developed in a vacuum. Biochemist Jennifer Doudna at the University of California, Berkeley and her team made landmark CRISPR discoveries.

This week, they are challenging Zhang and the Broad in court for the rights arguing in part that Zhang’s advance was derived from her team’s breakthrough. It’s a high stakes battle. CRISPR is projected to be a multi-billion dollar market in a decade.

Bill Whitaker: Does that mean big business for you?

Feng Zhang: I think we’re– we’re still– quite a ways away from developing– CRISPR into a real therapeutic.

Bill Whitaker: I think you’re being a little bit modest. I mean this is sparking an incredible boom in biomedicine. And you’re in the center of it.

Feng Zhang: I think there is still really a lot of work that still needs to be done,  developing the systems so that they are efficient enough, making sure that they are safe enough, but these are things that– that we’re working hard to– to make possible.

“While it’s not gonna affect somebody who might be dying of a disease today, this is gonna have a real effect over the course of the next decade and couple of decades.”

But, what if it were possible to stop disease from even occurring? That sounds like science fiction, but a team of researchers in Portland, Oregon say with CRISPR, it’s now a reality.

Bill Whitaker: You correct it at the very, very earliest stages of life.

Shoukhrat Mitalipov: Right.

Bill Whitaker: In the womb.

Shoukhrat Mitalipov: Even before the womb.

Manipulating embryos has been the focus of Shoukhrat Mitalipov’s career. He runs the Center for Embryonic Cell and Gene Therapy at Oregon Health and Science University. Mitalipov is a maverick. He regularly makes headlines with his innovative, sometimes controversial methods to prevent genetic disease.

Shoukhrat Mitalipov: Preventing is always more effective– so there would be no– no recurrence of new disease. Particularly when we’re talking about heritable– diseases that parents pass to children.

So Mitalipov and an international team of scientists decided to use CRISPR on human embryos to correct a single genetic mutation that causes a deadly heart disease called hypertropic cardiomyopathy.

They got healthy eggs from donors and sperm from a man who carries the disease. At the same time the eggs are fertilized, they also get an injection of CRISPR. Mitalipov enlarged the microscopic procedure over three hundred times so we could see it.

Shoukhrat Mitalipov: Here we have our pipette with sperm inside, which has been already exposed to CRISPR.  And this is a egg. And so what we need to do is pierce through, and then we break membrane. And now –

Bill Whitaker: Release the sperm into the egg.

Shoukhrat Mitalipov: Yeah. And now this is the sperm coming in.

Bill Whitaker: Wow.

Shoukhrat Mitalipov: Now it’s inside there.

Bill Whitaker: Just like that, that egg has been CRISPRed?

Shoukhrat Mitalipov: CRISPRed, fertilized.

Bill Whitaker: And you have changed the genetic destiny of that embryo.

Shoukhrat Mitalipov: Yes, we believe so.

These embryos will never be implanted, but they are grown in an incubator for three days and then checked to see if they carry the disease mutation.

Normally, 50 percent would. Mitalipov says with CRISPR, 72 percent were free of the mutation that would cause the heart disease.

Bill Whitaker: This is a huge– advance in science and medicine.

Shoukhrat Mitalipov: We hope so. I think we– we’re still kind of in the early stages. I wouldn’t say that we are ready to– to go to clinics now.

He knows his results have to be replicated by an outside lab before they’re accepted by the scientific community. But if they hold up, one day CRISPR could be used to help families that have been plagued by inherited disease for generations.

Bill Whitaker: Is that what drives you?

Shoukhrat Mitalipov: Yes. Of course, it’s a suffering of children, but also the guilt the parents have at saying, “I passed it to my child.” So it’s like, “I caused this disease.” And I think now, we have a tool where we could help these families.

Mitalipov wants to use CRISPR to eliminate disease, but the concern is his research has created a blueprint for less scrupulous doctors to design human beings – to edit embryos to make babies that are smarter, taller, stronger. Mitalipov says that’s not even possible right now.

Bill Whitaker: Your critics say that you’re playing God.

Shoukhrat Mitalipov: I think– you could say to– to every treatment that they– humans and doctors develop that– we– we’re playing God. God gave us brains so we could find a way to eliminate suffering of human beings. And if that’s– you know, playing God, I guess that’s the way it is.

Bill Whitaker: So what do you think about editing an embryo to prevent disease?

Feng Zhang: We don’t really understand how complicated biology is. There’s a gene called PCSK9. If you remove PCSK9, you can reduce cardiovascular disease, heart attack– risks significantly. But it also has been shown recently to increase risk for diabetes. So how do you make the judgment call between these tradeoffs? And there will likely be other—impacts we haven’t yet identified. So I think we need to wait and be more cautious.

Eric Lander: I don’t think we’re close to ready to use it to go edit the human population. I think we’ve gotta use it for medicine for a while. I think those are the urgent questions. That’s what people want right now, is they want cures for disease.

Those urgent questions might soon be answered. A small clinical trial, the first in the U.S. using CRISPR to target certain types of cancer, is now enrolling patients.

Eric Lander: I wanna always balance hope versus hype here. While it’s not gonna affect somebody who might be dying of a disease today, this is gonna have a real effect over the course of the next decade and couple of decades. And for the next generation, I think it’ll be transformative.

Produced by Nichole Marks. Associate producers, Kate Morris and Jaime Woods.

25

Jan
2018

No Comments

In Featured
GMO Labeling

By admin

Internet of Things? That’s old hat. How about an Internet of Tomatoes?

On 25, Jan 2018 | No Comments | In Featured, GMO Labeling | By admin

Concord Monitor

You’ve heard, of course, about the Internet of Things plenty of times in this column. Maybe it’s time for a different IoT: the Internet of Tomatoes.

“About 88 percent of farms around the U.S. are small and medium size, and of those, nearly 100 percent have no instrumentation,” said Erick Olsen, whose title is smart agriculture manager for Analog Devices, a Massachusetts-based data conversion and signal processing giant that is targeted toward farmers. “What we’re trying to do is not break the system, but show that by proper measurement, a new way to look at a crop and judge its quality … farms can benefit.” Read more…

25

Jan
2018

No Comments

In Featured
Latest News

By admin

Foodstuffs: For a UNH Scientist, a Career Spent Pursuing the Perfect Gourd

On 25, Jan 2018 | No Comments | In Featured, Latest News | By admin

NHNPR

For a half-century, UNH professor emeritus of plant biology and genetics J. Brent Loy has been in pursuit of genetically ideal gourd.

Loy, who is a researcher with the researcher with the NH Agricultural Experiment Station, has been using selective breeding techniques to create varieties of melons, pumpkins, and squash that satisfy the needs of commercial growers and gardeners alike.

Recently I stopped by UNH’s Kingman Research Farm in Madbury to learn more about his work.

Read more…